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CFDTool: A Web-based Training Tool for CFD 
 

Roy P. Koomullil∗ and Bharat K. Soni§ 

1 Introduction 
The rapid development of supercomputers, high performance workstations, 

numerical algorithms, and high-speed data networks has resulted in dramatically 
increased computational power and efficiency.  As a result, Computational Fluid 
Dynamics (CFD) has emerged as an essential analysis tool, and has fundamentally 
changed the way in which the underlying principles of science and engineering are 
applied to research, design and development problems.  CFD techniques have been used 
extensively in analyzing fluid mechanics, heat and mass transfer, electromagnetics, 
hydrodynamics, atmospheric sciences, solid mechanics, water quality and effluent 
transport problems, as well as many other problems.   

In the CFD process, the partial differential equations (PDEs), which govern the 
problem of interest, are solved using numerical methods on a high-speed computer or 
network of computers.  Many methods have been used for approximating the continuous 
PDEs by discrete numerical approximations.  Among these methods are finite-difference, 
finite-volume, finite-element, integral and spectral methods.  The CFD process can be 
described by the following steps: 

 
 Step I: Pre-processing 

§ Problem definition 
§ Selection of governing equations 
§ Domain decomposition 
§ Geometry discretization 
§ Numerical grid generation 
§ Boundary condition specification 

Step II: Processing 
§ Solve a set of discretized PDEs using numerical algorithms 

Step III: Post-processing 
§ Graphical visualization and interpretation of simulated field 

characteristics 
 

The different phases of the simulation process - such as grid generation, geometry 
definition, flow simulation, and visualization - depend, in part, on information obtained in 
other phases.  This information-passing results in a time-consuming trial and error 
procedure that requires an experienced user.  User-friendly graphical user interfaces 
(GUIs) have the potential for seamlessly coupling the various phases, thus lessening the 
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need for highly specialized users and streamlining the procedure.  These GUIs can be 
also used for teaching newcomers the overall process of CFD.  

One of the missions of the Major Shared Resource Center (MSRC) Programming 
Environment and Training (PET) program is to educate students and Department of 
Defense (DoD) High Performance Computing (HPC) practitioners in solving large-scale 
simulation problems.  Several steps have been taken towards this goal.  Under Army 
Research Laboratory (ARL) and Aeronautical Systems Center (ASC) sponsorship, a 
GUI-based training course in grid generation is being developed at Mississippi State 
University (MSU). Also a flow solver demonstration tool was created using the WEB-
based tool, jvwt (java virtual wind tunnel), which was developed at Massachusetts 
Institute of Technology (MIT) and enhanced at MSU to demonstrate the CFD simulation 
process to undergraduate students at Jackson State University (JSU), Mississippi. 
However, a more thorough GUI driven training and demonstration tool is needed to teach 
and demonstrate basic concepts of CFD and HPC to students, young engineers and non-
CFD DoD practitioners. This development, called CFDTool, provides a basis for future 
development of WEB-based training tools for CFD practitioners.   

The CFDTool uses the Qt GUI library (http://www.trolltech.com/) and OpenGL 
to provide interactive visualization and control to various selections (Boundary 
conditions, geometry, grid, flow variables to visualize, numerical scheme to exercise, 
dissipation order to apply, angle of attack, contour vs. line plots, etc.). The software 
contains various numerical schemes, boundary conditions and macros for geometry and 
grid information. 

The CFDTool consists of many modules that are explained in detail in Section 2.  
The methodology used for the grid generation and basic algorithms used to solve the 
governing equations are described in Section 3 and 4, respectively, and are followed by 
references in Section 5. 

2 Modules Description 
 The CFDTool is a web-based program that allows the user to go through the 
various steps involved in CFD analysis. These steps involve: geometry definition, grid 
generation, boundary condition set-up, governing equations solution, and visualization.  
These modules are combined together using a main control unit as shown in Figure 1. 

From the geometry module, the user can load a geometry definition file (Figure 2 
and 3) as a set of points. The set of points can be either in the PLOT3D format or co-
ordinates of points as (x,y,z) pairs.  The geometry file can be either the salient points 
defining the geometry or can be a discretization of the geometry with appropriate point 
distribution for the simulation.   In either case, the user can redistribute points (Figure 4) 
in the geometry after loading the geometry file.  This redistribution is achieved by 
interactively selecting a segment of the geometry and specifying the number of points 
required and the type of distribution desired.  Options are provided to distribute points 
using different distribution functions such as exponential and hyperbolic functions.  Point 
clustering can be specified on either ends of the curve, both ends of the curve, or 
anywhere in between. Snapshots of the modules related to geometry are given in Figures 
2-4. 

The next step in the flow simulation process is setting up the boundary condition, 
and is achieved by utilizing the boundary condition module (Figure 5).  In this module, 



users can select different boundaries interactively and set boundary conditions for that 
segment.  All the boundary conditions are color-coded and the color of the boundary 
curve changes when the user sets a new boundary condition.  The default boundary 
condition is set as a slip wall. 

Figure 1.  Different Modules in CFDTool 
 

The next step in the process is the grid generation.  Two different types of grids 
can be generated using CFDTool: unstructured and hybrid grids. The different parameters 
of the grid generators, such as the point distribution, can be changed using the grid 
module of the GUI.  The input to the unstructured grid generator is a stretching parameter 
(Figure 6), which controls the shape of the generated triangles.  For the hybrid grid, the 
input is the function that defines the normal growth of the point distribution.  The 
approach for the hybrid grid generation is explained in Section 3.   

In the flow solver module (Figure 7), the user can select different schemes, 
governing equations, accuracy, number of time-steps, etc. and set the freestream 
conditions.  In the current version of the program the user has to wait until the end of the 
time iteration to visualize the results.  We are looking into different options to visualize 
intermediate results.  In the visualization module (Figure 8), the user has the option to 
select any of the conserved variables for visualization purposes.  Currently, the results are 
presented as shaded contours.  Pictures showing the GUI for grid, flow simulation, and 
visualization modules are shown below: 
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Figure 2.  GUI for Reading Geometry 
 

 
 

Figure 3.  Geometry Module 



 
 

Figure 4.  Module for Redistributing Points 
 

 
 

Figure 5: Module to Setup Boundary Condition 



 
 

Figure 6.  Unstructured Grid Generation Module 
 

 
 

Figure 7: Flow Condition Setup Module 



 
 

Figure 8. Visualization Module 

3 Technical Description of the Hybrid Grid Generator 
The first type of generalized grid considered here is the so-called hybrid grid. The 

hybrid grid generation process is a combination of structured and unstructured grid 
methodologies. The hybrid grids used here consist of a structured grid in the viscous 
dominated regions and an unstructured grid in the rest of the field. Good quality 
structured grids in the boundary layer are generated by an advancing layer algorithm 
coupled with local elliptic smoothing (Huang [1]).  The overlapped structured grid from 
the different solid bodies in the domain is trimmed by comparing the aspect ratios of the 
cells. The remainder of the domain is filled with an unstructured grid. 
 
3.a Generation of the Structured Grids  
 

An advancing front scheme is utilized to generate the structured grid.  Marching 
fronts are started from the different entities in the field. The normal to the body surface at 
each point is calculated by averaging the normals of the line segments sharing the point. 
The point in the next layer is evaluated utilizing a user-specified distance along the 
normal.  Once the second layer of points is fully determined, the second layer is taken as 
the new marching front.  A third layer is generated from the previously generated grid 
line using the procedure outlined above. An elliptic solver is applied to these three grid 
lines to smooth grid lines and avoid grid crossing.  This step is important for geometries 
having concave and convex surfaces.  The smoothing will help ensure a smooth turning 
of the surface normals for concave surfaces. After the application of the elliptic solver, 



the second grid line is taken as the new front and the process is repeated until the required 
number of structured grid layers in the boundary layer is reached.  Since this is a 
marching scheme and the application of the elliptic solver is local, the overall process is 
very fast and robust. 
 
3.b Trimming of the Structured Grids 
 

As discussed above, structured grids in the vicinity of the solid bodies in the 
domain are generated independently.  These structured grids are trimmed based on the 
aspect ratio of the cells and overlapping of the component grids (Huang [1]).  All cells 
that have an aspect ratio less than unity are removed.  After clearing the cells with aspect 
ratio less than one and those that overlap, the points located near the cleared gap region 
are connected to form a closed loop.  The closed outer boundary loops for the component 
grids together with the global outer boundary information are supplied as boundaries for 
the unstructured grid generation. 

Sometimes two component grids may be close enough so that there is not enough 
space for growing the high aspect ratio cells to unity before the trimming.  In this case, 
the boundary points are refined to get a smooth transition of the structured grid to 
unstructured grid.  
 
3.c Generation of the Unstructured Grid 

 
After trimming, part of the physical domain is filled with non-overlapping 

structured grids and the rest of the domain is left empty.  This empty region is then filled 
with triangular cells.  The unstructured grid is generated using Delaunay triangulation 
(Weatherill [2]).  In Delaunay triangulation the boundaries are formed by the outer 
boundaries of trimmed structured grids and the outer boundary of the physical domain. 
As the final step of the hybrid grid generation, the trimmed structured grid and the 
unstructured grid are connected to form a single grid.  The connectivity table is also 
updated with the new node numbers. 

An example of a hybrid grid generated using this approach is shown in Figure (9).  
Figure (10) shows a close-up view of the trimmed structured grid near the leading edge of 
an iced airfoil and the resulting hybrid grid is shown in Figure (11). 

      
 
(a) Structured Grid                  (b) Trimming Structured    (c) Filling the Domain with  
       Generation        Grid     Unstructured Grid 

Figure 9 Stages of Hybrid Grid Generation 



4 Technical Description of the Flow Solver 
For the flow solver, the integral form of the non-dimensionalized Navier-Stokes 

equations is taken as the governing equation (Koomullil [3]) and is given below. The 
non-dimensionalizations are based on the freestream conditions.  The velocity 
components are non-dimensionalized with respect to (w.r.t.) the total freestream velocity 
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where Q is the conserved variable vector, F(Q) is the inviscid flux vector, Fv(Q) is the 
viscous flux vector, and n is the outward pointing unit normal to the control volume. 

Finite-volume schemes are well suited for generalized grids, because a typical 
generalized grid is an agglomeration of polygons with different numbers of sides. For the 
present work, we have used a cell-centered, finite volume scheme, in which cell-averaged 
flow variables are stored at the cell center.  The discretized form of the above equation 
can be written as: 
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where Vi is the volume of the cell, i, j represents the edges that form the cell, and Fij and 
Fv

ij are the inviscid and viscous numerical fluxes, respectively. 
The inviscid numerical flux passing through the cell faces is calculated by Roe's 

approximate Riemann solver (Roe [4]) as an exact solution for a linearized Riemann 
problem.  Using the approximate Riemann solver, the flux through a cell face is given by 
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    Figure 10 Trimmed Structured Grid Near the        Figure 11 Hybrid Grid Around an  
                   Leading Edge      Iced Airfoil 



 
where subscripts L and R represent cells on the left and right sides of the cell-face, and 

|| A  is the Roe-averaged matrix (Roe [4]). 
Higher-order accuracy in the spatial discretization is obtained using a linear 

reconstruction of the conserved variables, which are themselves obtained using a Taylor 
series expansion and Gauss' theorem.   

The Taylor’s series expansion for a function of two variables is written as 
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The gradient of the conserved variables at the cell center is estimated using 

Green’s theorem with the control volume taken as the cell itself.  The values of the 
conserved variable vector at the nodes are estimated based on a weighted averaging 
procedure.  During the reconstruction process, local extrema may be created.  These 
extrema may produce spurious values in regions where there are sharp jumps in the flow 
variables such as shocks, contact discontinuities, expansion regions, etc.  In order to 
avoid this, a limiter function is employed and the Taylor’s series expansion is modified as  
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where φ is the limiter function (Barth [5], Venkatakrishnan [6]) and its value is limited 
between zero and one. 

In the case of implicit schemes, the numerical flux crossing the cell face is a 
function of the conserved variables at the (n+1)th time level.  The flux vector has to be 
linearized before the evaluation of the flux crossing the cell faces.  The resulting linear 
system can be written as, 
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 and can be estimated using approximate analytical 

Jacobians, by taking the Roe-averaged matrix || A  to be constant, or by a numerical 
approach (Whitfield [7]).  During the linearization, the viscous flux vectors are treated 
explicitly.  The matrix system resulting from the above equation is solved using the 
Generalized Minimum RESidual (GMRES) method (Saad and Schultz [8]). 

The simulation of many complex features of flows of practical importance needs 
to account for the flow's turbulent behavior.  The laminar viscosity is usually a function 
of temperature and is estimated using Sutherland's formula (Warsi [9]).  The turbulent 



viscosity is a function of the flow and is usually evaluated using an empirical model.  In 
the present study, the turbulent viscosity is estimated using the Spalart-Allmaras one-
equation turbulence model (Spalart and Allmaras [10]) and the Reynolds stress is 
modeled using the Boussinesq hypothesis (Warsi [9]).  The Spalart-Allmaras one-
equation model encompasses a solution of a second-order partial differential equation for 
the variable υ . The turbulent kinematic viscosity is estimated by applying a damping 
function. 

The non-dimensional form of the Spalart-Allmaras one equation turbulence model 
in the vector invariant form, without tripping terms, can be written as 
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The different variables and functions appearing in the above equation can be summarized 
as 
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Cb1=0.1355             σ=2/3                            Cb2=0.622   κ=0.41 
 
Cω2=0.3  Cω3=2.0     Cv1=7.1 
 
The details of the implementation of Spalart-Allmaras one equation model can be found 
in Koomullil [3]. 

5 Future Work 
At present, all modules described in the Section 2 are loosely incorporated and 

linked with appropriate programs. Streamlining of the process is under development.  
Current work in progress includes: creating a unified geometry definition for unstructured 
and hybrid grids, improving revision capabilities from the visualization module to 
geometry modules for iteration purposes, improving memory management, and 
producing better color maps for visualization purposes.  Also, in the current version of 
CFDTool, grid generation is limited to only unstructured grids. Work is in progress to 
link the hybrid grid generator described in Section 3 of this report into the CFDTool. 
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